Velocity and feedback enhance 21-cm signal from first stars at z ~ 20

Anastasia Fialkov Tel Aviv University 24 September 2012, Fermilab

In Collaboration with:

Rennan Barkana, TAU Eli Visbal, Harvard Christopher Hirata, Caltech Dmitri Tseliakhovich, Caltech

Outline:

- 1. Intro:
 - i. First Stars
 - ii. 21-cm

2. Spatial Distribution of First Stars

3. Signature of First Stars in the 21-cm Signal

AF, Barkana, Tseliakhovich & Hirata (2012) Visbal, Barkana, AF, Tseliakhovich & Hirata, Nature (2012) AF, Barkana, Visbal, Tseliakhovich, Hirata, Submitted

Cosmic History

z ~ 1100

Cold Neutral Gas Mostly HI

Image: Loeb, Scientific American 2006

 \mathbf{O}

CMB First Stars Starlight heats & ionizes the gas

Observed:

Image: Loeb, Scientific American 2006

CMB (z ~ 1100)

Point sources (z < 10)

Local structure (z < 2)

Unobserved (1000>z>7):

Image: Loeb, Scientific American 2006

Dark ages First stars & galaxies Reionization

In this talk: The Epoch of the First Stars z ~ 15 z ~ 65 Neutral Mostly HI Also H₂, He.

The First Stars:

Image: Loeb, Scientific American 2006

From H_2 in light halos M ~ 10⁵ M_{sun} Tegmark et al 1997

Formed at z < 65 AF, Barkana, Tseliakhovich, Hirata 2012

Artist impression of the core of the SKA. Created by: Xilostudios

The epoch of first stars can be probed with redshifted 21-cm line of HI

21-cm Line from Spin-flip Transition of HI

- $\lambda = 21 \text{ cm}$
- v = 1420 MHz (Radio)

Opposite spins: lower-energy configuration

Spin Temperature

 $n_1/n_0 \equiv 3exp(-T_*/T_s), T_* = 0.068 \text{ K}$

 n_1/n_0 depends on the ambient

Atomic Physics Teaches about the Early Universe

• 21-cm signal of HI from high z:

 $\approx 9 (1+\delta)(1+z)^{1/2}(1-T_{CMB}T^{-1}s)$

- T_S depends on the gas, radiation etc. (Epoch of first stars: T_S ≈ T_{gas})
- Redshifted 21-cm photons have $\tau \approx 0 \rightarrow$ are observable!

Source for 21-cm observations: CMB

CMB Black Body Spectrum

Distorted Spectrum:

 $h\nu << k_B T$ $I_{\nu}=2 k_B T \nu^2/c^2$

hot gas \rightarrow emits 21 cm

cold gas \rightarrow absorbs 21 cm

Observations are challenging! Foregrounds \approx (10⁵ – 10⁹) × Signal

Astrophysical Foregrounds

- Galactic Synchrotron Emission
- Extragalactic Radio Sources

Synchrotron De Oliveira-Costa *et al* 2008

Terrestrial

- Ionosphere Distortions
- Radio Frequency Interference

Future Telescopes

SKA 20 > z (PS) LEDA 30 > z > 15 (global) DARE 35 > z > 11 (global)

LEDA

Outline:

- 1. Intro:
 - i. First Stars
 - ii. 21-cm

2. Spatial Distribution of First Stars

3. Signature of First Stars in the 21-cm Signal

First Stars are Highly Clustered:

- 1. Local density fluctuations are biased by δ_{LS}
 - Press & Schechter 1974; Bardeen, Bond, Kaiser & Szalay 1986; Kaiser 1984; Bond, Cole, Efstathiou & Kaiser 1991; Cole & Kaiser 1989; Mo & White 1996
- Star formation starts at high δ_{LS}

First Stars are Highly Clustered:

1. Local density fluctuations are biased by δ_{LS}

Press & Schechter 1974; Bardeen, Bond, Kaiser & Szalay 1986; Kaiser 1984; Bond, Cole, Efstathiou & Kaiser 1991; Cole & Kaiser 1989; Mo & White 1996

2. Supersonic relative velocities \rightarrow scale dependent bias

Tselikhovich & Hirata 2010; Dalal, Pen & Seljak 2010; Tselikhovich, Barkana &Hirata 2011; Maio, Koopmans & Ciardi 2011; Stacy, Bromm & Loeb 2011; Greif, White, Klessen & Springel 2011; Naoz, Yoshida & Gnedin 2011; O'Leary & McQuinn 2012; **AF**, Barkana, Tselikhovich & Hirata 2012;

High velocity suppressed star formation

Velocity Pattern

Baryon - DM Relative Velocity is Supersonic after Recombination

- $\sigma_{vbc} \approx 30 \text{ km/s} \approx 5c_s$
- Decays as (1+z)
- Random, MB distribution

Tseliakhovich & Hirata, 2010

Gas, V_{bc}

DM Gas overshoots DM halos

LARGE effect at LARGE k and LARGE z!

$v_{bc} \rightarrow Non-linear Terms are Non-perturbative$

EOM: Fluid equations in expanding background

$$\frac{\partial \delta_c}{\partial t} + \underbrace{a^{-1}v_c \nabla \delta_c}_{=} = -a^{-1} \left(1 + \delta_c\right) \nabla v_c$$
$$\frac{\partial v_c}{\partial t} + \underbrace{a^{-1} \left(v_c \nabla\right) v_c}_{=} = -\frac{\nabla \Phi}{a} - H v_c$$
$$\frac{\partial \delta_b}{\partial t} + \underbrace{a^{-1} v_b \nabla \delta_b}_{=} = -a^{-1} \left(1 + \delta_b\right) \nabla v_b$$
$$\frac{\partial v_b}{\partial t} + \underbrace{a^{-1} \left(v_b \nabla\right) v_b}_{a^{-2} \nabla^2 \Phi} = 4\pi G \bar{\rho}_m \delta_m$$

Nonlinear terms are LARGE!

Coherence scale \rightarrow ~ linear eom at \leq 3 Mpc

ρ_{gas} , z = 20, $M_h \sim 1.5 \times 10^5$ O'Leary & McQuinn, 2012 Supersonic DM bullet

Supersonic velocities have large impact on structure formation

The Effect of v_{bc} on Structure Formation

Scale-dependent bias

 Suppresses halo abundance on scales 10⁴-10⁸ M_{sun} Tselikhovich & Hirata 2010

- Suppresses halo baryon fraction
- BAO in PS of early structure

Dalal, Pen & Seljak 2010; Tselikhovich, Barkana & Hirata 2011

Boosts minimal cooling mass (harder to form stars)
 AF, Barkana, Tselikhovich & Hirata 2012

(relying on the simulations: Maio, Koopmans & Ciardi 2011; Stacy, Bromm & Loeb 2011; Greif, White, Klessen & Springel 2011; Naoz, Yoshida & Gnedin 2011; O'Leary & McQuinn 2012)

v_{bc} Suppresses Halo Abundance

First in Tseliakhovich & Hirata(2010)

v_{bc} washes out density perturbations on small scales

Tseliakhovich, Barkana & Hirata (2010)

v_{bc} Suppresses Gas Content

First in Dalal, Pen, & Seljak (2010)

 v_{bc} acts as pressure \rightarrow less gas in halos M/ M_{\odot} < 10⁷

Tseliakhovich, Barkana & Hirata (2010)

Minimal H₂ Cooling Mass from **Simulations:**

With $v_{bc} = 3$ km/s at z = 99

Stacy, Bromm & Loeb (2011)

Stars form later and in more massive halos

$\begin{array}{l} \text{Minimal H}_2 \text{ Cooling Mass} \\ \text{M}_{\text{cool}}(v_{\text{bc}}): \end{array}$

 $M_{cool}(V_{bc}) \rightarrow V_{bc}$ affects star formation

Greif, White, Klessen & Springel (2011)

v_{bc} Suppresses Gas Fractions

Gas fractions in halos. Global average over the sky

Tseliakhovich, Barkana & Hirata (2010) & AF, Barkana, Tseliakhovich & Hirata (2012)

Relative Importance of the v_{bc} Effects for Stars

 $f_{gas}(v_{bc}) / f_{gas}(0)$

AF, Barkana, Tseliakhovich & Hirata (2012)

v_{bc} Delays Star Formation

Δz ~ 5, Δt ~ 3.6 Myr ~ 10% effect

z ~ 65 z ~ 70

Random $v_{bc} \rightarrow$ Patchy Early Universe

At z = 60: 68% of stars in 10% of volume

At z = 20: 68% of stars in 35% of volume

AF, Barkana, Tseliakhovich & Hirata (2012)

Spatial Distribution of First Stars

We need to include

- 1. Stars (small scales)
- 2. Fluctuations in stars (large scales)

Use Hybrid Methods

- Zagh et al 2005; Mesinger & Furlanetto 2007; Geil & Wyithe 2008; Alvarez et al 2009; Choudhury, Heahnelt & Regan 2009; Thomas et al 2009; Mesinger, Furlanetto, Cen 2011 (21CMFAST);
- Visbal, Barkana, AF, Tseliakhovich & Hirata, 2012, Nature; AF, Barkana, Visbal, Tseliakhovich & Hirata, 2012, submitted

Visbal, Barkana, **AF,** Tseliakhovich & Hirata, **2012, Nature**

~400 Mpc

The Method

- Volume ~ (400 Mpc)³
- Pixels of 3 Mpc each of fixed v_{bc}
- Linear scales (> 3 Mpc): Simulation
- Non-linear (< 3 Mpc) Given v_{bc} Analytical models
 Fit to numerical simulations
 Find stellar content of each pixel

Initial Conditions: Realistic samples of the Universe at large scales

Visbal, Barkana, AF, Tseliakhovich, Hirata, Nature (2012)

Gas fraction in star-forming halos, z = 40

Log [gas fraction (normalized)]

The effect of v_{bc} decays with redshift

Visbal, Barkana, AF, Tseliakhovich, Hirata, Nature (2012)

Outline:

- 1. Intro:
 - i. First Stars
 - ii. 21-cm

2. Spatial Distribution of First Stars

3. Signature of First Stars in the 21-cm Signal

Stars Radiate

X-rays: Heat the gas (T_{gas} \uparrow)

Lyman-Werner : Lessen star formation ($T_{gas} \downarrow$) "Negative feedback to star formation"

Lya: $T_S \rightarrow T_{gas}$ (Wouthuysen-Field effect)

Radiation affects T_S and imprints signature of stars in 21-cm signal

Signal $\approx 9 (1+\delta)(1+z)^{1/2}(1-T_{CMB}T^{-1}s)$

Fluctuations in Radiation ≈ Fluctuations in Stars

Local Intensity:

- Emitted by rare stars
- All sources contribute (LW, Lyα: effective – horizon ~100 Mpc)
 - Time delay
 - Redshift
 - Optical depth

Inhomogeneous radiation \rightarrow Inhomogeneous 21 cm signal

Visbal, Barkana, AF, Tseliakhovich, Hirata, Nature (2012)

21-cm Signal from Heating Fluctuations at $z \approx 20$ (Heating Transition)

Use hybrid method

Include:

Fluctuations in X-rays (maximal around z ~ 20)
LW "toy models":

- Molecular cooling (no feedback)
- Atomic cooling (saturated)

Ignore: Fluctuations in Ly α (max around z ~ 30)

Heating Fluctuation ($T_s = T_k$)

z = 20

21-cm Power Spectrum at z_{heat}

Noise (LOFAR-like but tuned to 4.5 m) McQuinn et al 2006 Old: No v_{bc} no feedback New!!!

 v_{bc} , molecular cooling v_{bc} , atomic cooling

Visbal, Barkana, AF, Tseliakhovich & Hirata, Nature (2012)

Feedback, v_{bc}: BAO, stronger clustering

Maximal Heating Fluctuations at ~z_{heat}+3 (AF, Barkana, Visbal, Tseliakhovich, Hirata, Submitted)

Simulation: Evolution with time

No v_{bc} v_{bc} Flight Through Time $\delta T_b - \langle \delta T_b \rangle$

"Realistic" LW Feedback

(**AF**, Barkana, Visbal, Tseliakhovich, Hirata, Submitted)

Machacek et al 2001; Wise & Abel 2007; O'Shea & Norman 2008 Ahn et al 2009; Holzbauer & Furlanetto 2012

Feedback: Dissociates $H_2 \rightarrow Boosts M_{cool}$

 $M_{cool}(J_{LW}, z) = M_{cool,0} [1+6.96(4 \pi J_{LW})^{0.47}]$ Feedback: Fixed, Independent on v_{bc}

 $M_{cool}(v_{bc}, J_{LW}, z) = M_{cool,0} (v_{bc})[1+6.96(4 \pi J_{LW})^{0.47}]$ We use "Realistic" Feedback: Depends on v_{bc} , changes fast with time, is delayed New simulations needed

Feedback and velocity delay heating

No v_{bc} , no feedback v_{bc} , no feedback v_{bc} weak feedback v_{bc} strong feedback v_{bc} saturated feedback

(AF, Barkana, Visbal, Tseliakhovich, Hirata, Submitted)

- Heating transition is delayed by :
- ~ 3% (no feedback)
- ~ 17% (saturated feedback)

Strong feedback = strong fluctuations

Feedback: Enhances PS & Suppresses BAO

 $\begin{array}{l} v_{bc} \text{ no feedback} \\ v_{bc} \text{ weak feedback} \\ v_{bc} \text{ strong feedback} \\ v_{bc} \text{ saturated} \end{array}$

Dashed: noise

(AF, Barkana, Visbal, Tseliakhovich, Hirata, Submitted)

 $\frac{\text{S/N}^{2}_{\text{new}} \sim 2.6 \times \text{S/N}^{2}_{\text{old}}}{\text{S/N}^{2}_{\text{new}} \sim 4.4 \times \text{S/N}^{2}_{\text{old}}}$

Summary

Velocity is important

More simulations needed!

v_{bc} & LW have strong effect on 21-cm signal

Good observational prospects!

